Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1094720150200050849
Biotechnology and Bioprocess Engineering
2015 Volume.20 No. 5 p.849 ~ p.855
Improved 1,3-propanediol production by Escherichia coli from glycerol due to Co-expression of glycerol dehydratase reactivation factors and succinate addition
Hong Eun-Soo

Kim Jin-Yeong
Ha Suk-Jin
Ryu Yeon-Woo
Abstract
Escherichia coli was engineered to produce 1,3-propanediol (1,3-PDO) from glycerol, an inexpensive carbon source. This was done by introducing a synthetic pathway consisting of glycerol dehydratase, glycerol dehydratase reactivation factor, and 1,3-propanediol oxidoreductase isoenzyme. The JM-30BY15AB harboring pQE30/dhaB123, yqhD and pQE15A/gdrA, gdrB produced 1,3-PDO (7.2 g/L) from glycerol, at a level higher than that produced by JM-30BY harboring pQE30/dhaB123, yqhD (4.1 g/L). When 10mM succinate was added to the medium, the titer of 1,3-PDO and the glycerol consumption increased to 9.9 and 23.84 g/L, respectively. In addition, the ratio of NADH to NAD+ increased by 43%. The titer of 1,3-PDO and glycerol consumption were 145.6 and 86.6% higher, respectively, than those from the control which harbors one vector system without gdrAB and did not include succinate addition. Under fed-batch fermentation conditions, the titer of 1,3-PDO and its conversion yield from glycerol were 13.11 g/L and 0.49 g/g, respectively. This dual-vector system may be a useful approach for the co-expression of recombinant proteins. Further, succinate addition is a promising route for the biotechnological production of NADH-dependent microbial metabolites.
KEYWORD
dual-vector system, engineered E. coli, glycerol, Klebsiella pneumoniae AJ4, 1,3-propanediol, succinate
FullTexts / Linksout information
 
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)